By Topic

A Histogram Modification Framework and Its Application for Image Contrast Enhancement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tarik Arici ; Dept. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Salih Dikbas ; Yucel Altunbasak

A general framework based on histogram equalization for image contrast enhancement is presented. In this framework, contrast enhancement is posed as an optimization problem that minimizes a cost function. Histogram equalization is an effective technique for contrast enhancement. However, a conventional histogram equalization (HE) usually results in excessive contrast enhancement, which in turn gives the processed image an unnatural look and creates visual artifacts. By introducing specifically designed penalty terms, the level of contrast enhancement can be adjusted; noise robustness, white/black stretching and mean-brightness preservation may easily be incorporated into the optimization. Analytic solutions for some of the important criteria are presented. Finally, a low-complexity algorithm for contrast enhancement is presented, and its performance is demonstrated against a recently proposed method.

Published in:

IEEE Transactions on Image Processing  (Volume:18 ,  Issue: 9 )