Cart (Loading....) | Create Account
Close category search window
 

Annealing behavior of vacancies and Z1/2 levels in electron-irradiated 4H–SiC studied by positron annihilation and deep-level transient spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Kawasuso, A. ; Martin-Luther-Universität, FB Physik, D-06099 Halle, Germany ; Redmann, F. ; Krause-Rehberg, R. ; Weidner, M.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1426259 

Annealing behavior of vacancies and the Z1/2 levels in n-type 4H–SiC epilayers after 2 MeV electron irradiation has been studied using positron annihilation and deep-level transient spectroscopy. Isochronal annealing studies indicate that silicon vacancy-related defects are primarily responsible for positron trapping. The Z1/2 levels are the predominant deep centers after irradiation and subsequent annealing at 1200 °C. Both the positron-trapping rate at vacancies and the Z1/2 concentration decrease in a similar manner while annealing from 1200 to 1500 °C. It is thus proposed that the Z1/2 levels originate from silicon vacancy-related defects. © 2001 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:79 ,  Issue: 24 )

Date of Publication:

Dec 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.