Cart (Loading....) | Create Account
Close category search window
 

Emission uniformity and emission area of explosive field emission cathodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Shiffler, D. ; Air Force Research Laboratory, Directed Energy Directorate, 3550 Aberdeen SE, Kirtland Air Force Base, New Mexico 87117 ; Ruebush, M. ; LaCour, M. ; Golby, K.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1415408 

Explosive field emission cathodes have been used extensively in high power microwave tubes. These cathodes emit electrons without the use of cathode heaters. Recently, some theoretical and simulation work has been performed to gain further understanding of the physics of these cathodes. The purpose of this letter is to provide the experimental background and justification for the theoretical work. The general idea of how explosive field emission cathodes operate is that plasma is rapidly formed, which provides the sea of electrons for space charge limited flow. However, recent theoretical and experimental work suggests edge effects, rather than plasma formation across the entire emission area, can also provide the same effect. In this letter we review three types of cathodes which have been tested. We provide optical data on the cathode emission uniformity as well as the electrical data for the same devices. In particular, we find that a large percentage of the cathode can fail to take part in the emission process and yet the voltage and current can appear identical from the case in which the entire cathode contributes electrons to the emission process. © 2001 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:79 ,  Issue: 18 )

Date of Publication:

Oct 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.