Cart (Loading....) | Create Account
Close category search window
 

Defect engineering in annealed n-type GaAs epilayers using SiO2/Si3N4 stacking layers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Deenapanray, Prakash N.K. ; Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia ; Martin, A. ; Jagadish, C.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1410870 

We have used SiO2/Si3N4 stacking layers to control the creation of defects in rapid thermally annealed epitaxial GaAs layers. Annealing at 900 °C introduces three electron traps S1 (Ec-0.23 eV), S2 (Ec-0.53 eV), and S4 (Ec-0.74 eV) in SiO2/n-GaAs. The concentrations of S1 and S4 decreased by factors of ∼28 and ∼19, respectively, in Si3N4/SiO2/n-GaAs. The overlap of a hole trap with the S2 peak in Si3N4/SiO2/n-GaAs results in an apparent decrease in the concentration of S2 by over two orders of magnitude. The lower concentration of defects in the region probed by deep level transient spectroscopy is explained by the tensile stress which the Si3N4 layer imposes on the structure during annealing. In addition to S1 and S4, hole traps H1 (Ev+0.28 eV) and H2 (Ev+0.42 eV) are observed in Si3N4/n-GaAs and SiO2/Si3N4/n-GaAs, respectively. The concentration of defects is larger by ∼1.5 times in the latter structure. SiO2/Si3N4 stacking layers can, therefore, be used to achieve spatially selective modification of GaAs-based structures using defect engineering. © 2001 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:79 ,  Issue: 16 )

Date of Publication:

Oct 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.