By Topic

Modeling of correlated failures and community error recovery in multiversion software

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
V. F. Nicola ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; A. Goyal

Three aspects of the modeling of multiversion software are considered. First, the beta-binomial distribution is proposed for modeling correlated failures in multiversion software. Second, a combinatorial model for predicting the reliability of a multiversion software configuration is presented. This model can take as inputs failure distributions either from measurements or from a selected distribution (e.g. beta-binomial). Various recovery methods can be incorporated in this model. Third, the effectiveness of the community error recovery method based on checkpointing is investigated. This method appears to be effective only when the failure behaviors of program versions are lightly correlated. Two different types of checkpoint failure are also considered: an omission failure where the correct output is recognized at a checkpoint but the checkpoint fails to correct the wrong outputs and a destructive failure where the good versions get corrupted at a checkpoint

Published in:

IEEE Transactions on Software Engineering  (Volume:16 ,  Issue: 3 )