Cart (Loading....) | Create Account
Close category search window
 

A reflected-scanned ultrasound system for external simultaneous thermoradiotherapy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moros, E.G. ; Mallinckrodt Inst. of Radiol., Washington Univ. Sch. of Med., St. Louis, MO, USA ; Straube, W.L. ; Myerson, R.J.

The simultaneous delivery of hyperthermia and ionizing radiation has the potential to improve clinical outcome. To this purpose, a scanning ultrasound reflector-linear array system (SURLAS) with the ability both to conform power to superficial volumes and to operate concomitantly with medical linear accelerators is currently under development. In this purpose-specific design, the ultrasound waves generated by a linear array are directed toward a scanning reflector which in turn deflects the waves toward the target. In previous experiments, the technical feasibility of this design was demonstrated. Here, the authors are concerned with the minimization of a key design parameter, namely, the array element size, in order to minimize the amount of attenuating/scattering water-equivalent medium that a photon or a electron beam passes through before entering the target. First, the SURLAS design is described. Second, an acoustic model to compute power deposition patterns is presented. This model is coupled to a bioheat transfer model for computation of temperature fields. Third, an analysis is performed to determine the minimum array element size for three target categories. Finally, acoustic fields and temperature distributions induced by the SURLAS for the three target categories are presented. The analysis and simulations show that the SURLAS has the potential to induce uniform temperature distributions in large superficial volumes with small enough elements to allow simultaneous delivery with electron beam therapy.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:43 ,  Issue: 3 )

Date of Publication:

May 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.