Cart (Loading....) | Create Account
Close category search window
 

Volume-preserving free-form solids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rappoport, A. ; Inst. of Comput. Sci., Hebrew Univ., Jerusalem, Israel ; Sheffer, A. ; Bercovier, M.

Some important trends in geometric modeling are the reliance on solid models rather than surface-based models and the enhancement of the expressive power of models, by using free-form objects in addition to the usual geometric primitives and by incorporating physical principles. An additional trend is the emphasis on interactive performance. In this paper, we integrate all of these requirements into a single geometric primitive by endowing the tri-variate tensor-product free-form solid with several important physical properties, including volume and internal deformation energy. Volume preservation is of benefit in several application areas of geometric modeling, including computer animation, industrial design and mechanical engineering. However, previous physics-based methods, which have usually used some form of “energy”, have neglected the issue of volume (or area) preservation. We present a novel method for modeling an object composed of several tensor-product solids while preserving the desired volume of each primitive and ensuring high-order continuity constraints between the primitives. The method utilizes the Uzawa algorithm for non-linear optimization, with objective functions based on deformation energy or least squares. We show how the algorithm can be used in an interactive environment by relaxing exactness requirements while the user interactively manipulates free-form solid primitives. On current workstations, the algorithm runs in real-time for tri-quadratic volumes and close to real-time for tri-cubic volumes

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:2 ,  Issue: 1 )

Date of Publication:

Mar 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.