By Topic

H-control of discrete-time nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Lin ; Dept. of Syst. Sci. & Math., Washington Univ., St. Louis, MO, USA ; Byrnes, C.I.

This paper presents an explicit solution to the problem of disturbance attenuation with internal stability via full information feedback, state feedback, and dynamic output feedback, respectively, for discrete-time nonlinear systems. The H-control theory is first developed for affine systems and then extended to general nonlinear systems based on the concepts of dissipation inequality, differential game, and LaSalle's invariance principle in discrete time. A substantial difficulty that V(A(x)+B(x)u+E(x)w) [respectively, V(f(x,u,w))] is no longer quadratic in [wu] arising in the case of discrete-time nonlinear systems has been surmounted in the paper. In the case of a linear system, we show how the results reduce to the well-known ones recently proposed in the literature

Published in:

Automatic Control, IEEE Transactions on  (Volume:41 ,  Issue: 4 )