By Topic

Correlation of picosecond laser-induced latchup and energetic particle-induced latchup in CMOS test structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Moss, S.C. ; Electron. Technol. Center, Aerosp. Corp., Los Angeles, CA, USA ; LaLumondiere, S.D. ; Scarpulla, J.R. ; MacWilliams, K.P.
more authors

We show that the thresholds for picosecond (psec) laser pulse-induced latchup and energetic particle-induced latchup are well correlated over a range of bulk CMOS test structures designed to be susceptible to latchup. The spatial length of the latchup-sensitive node of the test structures covers a range of values that commonly occur in bulk CMOS devices. The accuracy of this correlation implies that laser-induced latchup can be used for hardness assurance and, under the proper conditions, can be an accurate predictor of latchup threshold linear energy transfer (LET) for most bulk CMOS devices

Published in:

Nuclear Science, IEEE Transactions on  (Volume:42 ,  Issue: 6 )