Cart (Loading....) | Create Account
Close category search window
 

Parallel singular value decomposition of complex matrices using multidimensional CORDIC algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shen-Fu Hsiao ; Inst. of Comput. Eng., Nat. Sun Yat-Sen Univ., Kaohsiung, Taiwan ; Delosme, J.-M.

The singular value decomposition (SVD) of complex matrices is computed in a highly parallel fashion on a square array of processors using Kogbetliantz's analog of Jacobi's eigenvalue decomposition method. To gain further speed, new algorithms for the basic SVD operations are proposed and their implementation as specialized processors is presented. The algorithms are 3-D and 4-D extensions of the CORDIC algorithm for plane rotations. When these extensions are used in concert with an additive decomposition of 2×2 complex matrices, which enhances parallelism, and with low resolution rotations early on in the SVD process, which reduce operation count, a fivefold speedup can be achieved over the fastest alternative approach

Published in:

Signal Processing, IEEE Transactions on  (Volume:44 ,  Issue: 3 )

Date of Publication:

Mar 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.