By Topic

General approach to blind source separation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xi-Ren Cao ; Hong Kong Univ. of Sci. & Technol., Kowloon, Hong Kong ; Liu, R.

This paper identifies and studies two major issues in the blind source separation problem: separability and separation principles. We show that separability is an intrinsic property of the measured signals and can be described by the concept of m-row decomposability introduced in this paper; we also show that separation principles can be developed by using the structure characterization theory of random variables. In particular, we show that these principles can be derived concisely and intuitively by applying the Darmois-Skitovich theorem, which is well known in statistical inference theory and psychology. Some new insights are gained for designing blind source separation filters

Published in:

Signal Processing, IEEE Transactions on  (Volume:44 ,  Issue: 3 )