Cart (Loading....) | Create Account
Close category search window
 

A dynamic neural network identification of electromyography and arm trajectory relationship during complex movements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cheron, G. ; Lab. of Biomech., Univ. Libre de Bruxelles, Belgium ; Draye, J.-P. ; Bourgeios, M. ; Libert, G.

The authors propose a new approach based on dynamic recurrent neural networks (DRNN) to identify, in human, the relationship between the muscle electromyographic (EMG) activity and the arm kinematics during the drawing of the figure eight using an extended arm. After learning, the DRNN simulations showed the efficiency of the model. The authors demonstrated its generalization ability to draw unlearned movements. They developed a test of its physiological plausibility by computing the error velocity vectors when small artificial lesions in the EMG signals were created. These lesion experiments demonstrated that the DRNN has identified the preferential direction of the physiological action of the studied muscles. The network also identified neural constraints such as the covariation between geometrical and kinematics parameters of the movement. This suggests that the information of raw EMG signals is largely representative of the kinematics stored in the central motor pattern. Moreover, the DRNN approach will allow one to dissociate the feedforward command (central motor pattern) and the feedback effects from muscles, skin and joints.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:43 ,  Issue: 5 )

Date of Publication:

May 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.