By Topic

A robust single phase clocking for low power, high-speed VLSI applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Afghahi, M. ; Ericsson Radio Syst. AB, Stockholm, Sweden

Power dissipation is becoming a prime design constraint in VLSI systems. The new key words for evaluating a design's performance are low power and high speed. This requires an overall system design review that considers suitable algorithms, architectures, circuits, and technology. In synchronous systems, the clocking network sets the frame that contains the whole design. It must be simple and robust. Power consumption in the clock distribution network has usually been a substantial part of the system total power consumption. New true single phase latches and flip flops are presented that are slope-insensitive, fast, and have data dependent power consumption. Flip flops are presented that work between DC and 1.7 GHz clock frequencies in a 1 μm CMOS technology. Methods are given that result in power saving in the clock system by reducing the clock rate by half for the same data throughput on the system level

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:31 ,  Issue: 2 )