Cart (Loading....) | Create Account
Close category search window
 

Iterative learning control for discrete-time systems with exponential rate of convergence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Amann, N. ; Centre for Syst. & Control Eng., Exeter Univ., UK ; Owens, D.H. ; Rogers, E.

An algorithm for iterative learning control is proposed based on an optimisation principle used by other authors to derive gradient-type algorithms. The new algorithm is a descent algorithm and has potential benefits which include realisation in terms of Riccati feedback and feedforward components. This realisation also has the advantage of implicitly ensuring automatic step-size selection and hence guaranteeing convergence without the need for empirical choice of parameters. The algorithm achieves a geometric rate of convergence for invertible plants. One important feature of the proposed algorithm is the dependence of the speed of convergence on weight parameters appearing in the norms of the signals chosen for the optimisation problem

Published in:

Control Theory and Applications, IEE Proceedings -  (Volume:143 ,  Issue: 2 )

Date of Publication:

Mar 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.