By Topic

Synthesis and memory effect study of Ge nanocrystals embedded in LaAlO3 high-k dielectrics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lu, X.B. ; Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People''s Republic of China ; Lee, P.F. ; Dai, J.Y.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1926414 

A floating gate memory structure utilizing Ge nanocrystals embedded in LaAlO3 (LAO) high-k dielectric films has been fabricated by pulsed-laser deposition. A cross-sectional high-resolution transmission electron microscopy study revealed that the floating gate structure contains 5-nm-diam spherelike Ge nanocrystals embedded in amorphous LAO. A significant memory effect with a very high density of charge storage up to 2×1013/cm2 in the Ge nanocrystals and a maximum flat band voltage shift of 3.2 V have been achieved for the trilayer structure of LAO(8 nm)/Ge/LAO(3 nm)/Si. The memory structure utilizing the Ge nanocrystals grown in 1 min showed excellent charge retention characteristics, whereas the decay in memory capacitance after 104 s of stress under a flat band voltage was only 8%. These results suggest that this memory structure utilizing Ge nanocrystals embedded in a LAO dielectric offers a high potential for the further scaling of floating gate memory devices. In addition, the effects of Ge growth time, and thus the size and density of the Ge nanocrystals, to the charge storage and charge retention characteristics were also studied.

Published in:

Applied Physics Letters  (Volume:86 ,  Issue: 20 )