Cart (Loading....) | Create Account
Close category search window
 

Toward the formation of three-dimensional nanostructures by electrochemical etching of silicon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kleimann, P. ; LENAC, Université Claude Bernard Lyon-I, 43 bd. du 11 Nov. 1918, 69622 Villeurbanne, France ; Badel, X. ; Linnros, J.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1924883 

We report a simple technique to form various kinds of three-dimensional structures in silicon. The process flow is only composed of two steps: lithography and electrochemical etching (“LEE”). The LEE process is an easy and low-cost solution for the fabrication of high-aspect-ratio structures such as walls, tubes, and pillars. Here we demonstrate the possibility to apply the LEE process on the submicrometer scale, indicating that it is a promising tool for silicon nanomachining.

Published in:

Applied Physics Letters  (Volume:86 ,  Issue: 18 )

Date of Publication:

May 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.