By Topic

Using genetic programming to evolve board evaluation functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. J. Ferrer ; Dept. of Comput. Sci., Virginia Univ., Charlottesville, VA, USA ; W. N. Martin

Employs the genetic programming paradigm to enable a computer to learn to play strategies for the ancient Egyptian boardgame Senet by evolving board evaluation functions. Formulating the problem in terms of board evaluation functions made it feasible to evaluate the fitness of game playing strategies by using tournament-style fitness evaluation. The game has elements of both strategy and chance. Our approach learns strategies which enable the computer to play consistently at a reasonably skillful level

Published in:

Evolutionary Computation, 1995., IEEE International Conference on  (Volume:2 )

Date of Conference:

29 Nov-1 Dec 1995