Cart (Loading....) | Create Account
Close category search window

Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ukhanov, A.A. ; Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 ; Stintz, A. ; Eliseev, P.G. ; Malloy, K.J.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The spectral dependence of the modal gain and linewidth enhancement factor is measured in an InAs/GaInAs/AlGaAs/GaAs quantum dot (QD) laser and a GaInAs/AlGaAs/GaAs quantum well laser of the same design lacking only the quantum dots. The material differential gain and material differential carrier induced refractive index are found to be about three times smaller in the quantum dot laser than in the quantum well laser. The linewidth enhancement factor is smaller in the QD laser and exhibits considerably less dispersion. © 2004 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:84 ,  Issue: 7 )

Date of Publication:

Feb 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.