Cart (Loading....) | Create Account
Close category search window

Time-domain measurement of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Asano, T. ; Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510, Japan ; Kiyota, Kazuaki ; Kumamoto, Daisuke ; Bong-Shik Song
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The optical properties of line-defect waveguides in two-dimensional photonic crystal slabs are investigated using picosecond light pulses. Time-domain waveforms of the light pulse propagating through the waveguide are successfully observed using an autocorrelation method. The group velocity of the waveguide is directly determined from the group delay time for light pulses reflected back and forth along the waveguide. A small group velocity of one-twentieth the speed of light in vacuum is observed at a frequency near the edge of the waveguide mode. The frequency dependence of the group velocity is also measured, and the group-velocity dispersion is found to be larger than that of normal single-mode optical fibers by a factor of 104–105. © 2004 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:84 ,  Issue: 23 )

Date of Publication:

Jun 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.