Cart (Loading....) | Create Account
Close category search window
 

Electronic transport through individual ZnO nanowires

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Li, Q.H. ; Institute of Physics, Chinese Academy of Sciences, Beijing, 100080, China ; Wan, Q. ; Liang, Y.X. ; Wang, T.H.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1759071 

Electronic transport through individual ZnO nanowires has been investigated. The current increases linearly with the bias and the conductance jumps upon ultraviolet illumination. The increase rate upon the illumination is much faster than the decrease rate as the light is off. The decrease rate under vacuum is slower than that in air. These phenomena are related to the surface oxygen species and further confirmed by in situ current–voltage measurements as a function of oxygen pressure at room temperature. Also, the conductance increases greatly as the temperature is raised. These results demonstrate that the surface oxygen species dominate the transport process through individual ZnO nanowires, which indicates their potential application to room temperature gas sensors. © 2004 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:84 ,  Issue: 22 )

Date of Publication:

May 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.