By Topic

Temperature-dependent fatigue behaviors of ferroelectric ABO3-type and layered perovskite oxide thin films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yuan, G.L. ; Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, ChinaInternational Center for Materials Physics, Chinese Academy of Sciences, Shenyang, China ; Liu, J.-M. ; Wang, Y.P. ; Wu, D.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The temperature-dependent dielectric and ferroelectric fatigue behaviors of ABO3-type perovskite thin films Pb(Zr0.52Ti0.48)O3 (PZT) and Pb0.75La0.25TiO3 (PLT) and layered Aurivillius thin films SrBi2Ta2O9 (SBT) and Bi3.25La0.75Ti3O12 (BLT) with Pt electrodes are studied. The improved fatigue resistance of PZT and PLT at a low temperature can be explained by the defect-induced suppression of domain switch/nucleation near the film/electrode interface, which requires a long-range diffusion of defects and charges. It is argued that the fatigue effect of SBT and BLT is attributed to the competition between domain-wall pinning and depinning. The perovskitelike slabs and/or (Bi2O2)2+ layers act as barriers for long-range diffusion of defects and charges, resulting in localization of the defects and charges. Thus, the fatigued SBT and BLT can be easily rejuvenated by a high electric field over a wide temperature range. © 2004 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:84 ,  Issue: 17 )