Cart (Loading....) | Create Account
Close category search window
 

Electron heating mode transition observed in a very high frequency capacitive discharge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abdel-Fattah, E. ; Department of Electrical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan ; Sugai, H.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1604941 

The effect of excitation frequency in the 13.56–60 MHz range on the electron energy distribution function (EDF) of capacitively coupled plasma is investigated. Under a fixed rf voltage (50–130 V peak-to-peak) and argon pressure (100 mTorr), a remarkable change in the EDF is observed: a Druyvesteyn type at low frequencies (≃13.56 MHz) evolves into a bi-Maxwellian type in a very high frequency (VHF) above 30 MHz. The transition frequency decreases with increasing the rf voltage. The observed frequency effect on the EDF is tentatively explained in terms of the transition of electron heating mode from the collisional ohmic heating at low frequencies into the plasma surface heating in the VHF range. © 2003 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:83 ,  Issue: 8 )

Date of Publication:

Aug 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.