Cart (Loading....) | Create Account
Close category search window

Low-temperature, in situ tunable, uniaxial stress measurements in semiconductors using a piezoelectric actuator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We demonstrate the use of a piezoelectric actuator to apply, at low temperatures, uniaxial stress in the plane of a two-dimensional electron system confined to a modulation-doped AlAs quantum well. Via the application of stress, which can be tuned in situ and continuously, we control the energies and occupations of the conduction-band minima and the electronic properties of the electron system. We also report measurements of the longitudinal and transverse strain versus bias for the actuator at 300, 77, and 4.2 K. A pronounced hysteresis is observed at 300 and 77 K, while at 4.2 K, strain is nearly linear and shows very little hysteresis with the applied bias. © 2003 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:83 ,  Issue: 25 )

Date of Publication:

Dec 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.