Cart (Loading....) | Create Account
Close category search window
 

Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Wang, Dunwei ; Department of Chemistry, Stanford University, California 94305 ; Wang, Qian ; Javey, Ali ; Tu, Ryan
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1611644 

Single-crystal Ge nanowires are synthesized by a low-temperature (275 °C) chemical vapor deposition (CVD) method. Boron doped p-type GeNW field-effect transistors (FETs) with back-gates and thin SiO2 (10 nm) gate insulators are constructed. Hole mobility higher than 600 cm2/V s is observed in these devices, suggesting high quality and excellent electrical properties of as-grown Ge wires. In addition, integration of high-κ HfO2 (12 nm) gate dielectric into nanowire FETs with top-gates is accomplished with promising device characteristics obtained. The nanowire synthesis and device fabrication steps are all performed below 400 °C, opening a possibility of building three-dimensional electronics with CVD-derived Ge nanowires. © 2003 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:83 ,  Issue: 12 )

Date of Publication:

Sep 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.