Cart (Loading....) | Create Account
Close category search window
 

First-principles study of phosphorus diffusion in silicon: Interstitial- and vacancy-mediated diffusion mechanisms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liu, Xiang-Yang ; Computational Nanoscience Group, Motorola, Inc., Los Alamos, New Mexico 87544 ; Windl, Wolfgang ; Beardmore, Keith M. ; Masquelier, Michael P.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1562342 

A vacancy-mediated diffusion mechanism has been assumed in traditional models of P diffusion in Si. However, recent experiments have suggested that for intrinsic P diffusion in Si, the interstitial-assisted diffusion mechanism dominates. Here, we describe first-principles calculations of P diffusion in Si performed to study interstitial- and vacancy-mediated diffusion mechanisms. Special care is taken with regard to structural minimization, charge state effects and corrections. We calculated the defect formation energies and migration barriers for the various competing P–interstitial diffusion mechanisms, as well as P–vacancy diffusion energetics in different charge states. For P–interstitial diffusion, we find overall diffusion activation energies of 3.1–3.5 eV for neutral and +1 charge states, in close agreement with experiments at intrinsic conditions. For P–vacancy diffusion, our calculation is in agreement with previous calculations in the neutral case, but suggests that only P+V= plays a role in the heavily doped n region while the interstitial mechanisms may dominate in near-intrinsic regions. © 2003 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:82 ,  Issue: 12 )

Date of Publication:

Mar 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.