By Topic

Development and analysis of echo classification using time delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tremblay, R. ; Naval Underwater Syst. Center, New London, CT, USA ; Lytle, D.

The results from an investigation of an analytically based method for determining the performance of echo classifiers are presented. In particular, the problem of classifying echo waveforms reflected from objects that are composed of multiple scatterers is considered. The time delays between the multiple echo returns from the individual scattering centers that characterize an object are investigated as features. A generic stochastic point scatterer model is developed for representing the classes of reflecting objects which are of interest. The model allows for uncertainty in prior knowledge about the exact relative location of the individual component scatterers or uncertainty in the delay measurements. A classifier decision algorithm, in the form of a general optimum Bayesian binary classification decision rule suitable for a large variety of classification problems, is derived for the case when the orientation of the reflecting object is known. The case of unknown aspect angle is addressed through the numerical implementation and analysis of two classifiers. The associated performance for all three classifiers is obtained in terms of the probability of error and tied to standard sonar equation parameters. Example binary classification problems are presented and analyzed and some general observations made. A pragmatic framework is established within which complex echo classification issues can be further examined

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:21 ,  Issue: 2 )