By Topic

Influence of internal mechanical stress and strain on electrical performance of polyethylene electrical treeing resistance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
David, E. ; Inst. de Recherche, Hydro-Quebec, Varennes, Que., Canada ; Parpal, J.-L. ; Crine, J.-P.

Crosslinked polyethylene (XLPE) and low-density polyethylene (LDPE) insulations used in HV cables are not only subjected to electrical and thermal stresses, but also exposed to mechanical stresses, whether residual internal stresses created during the cooling process of the fabrication, external forces when cables are bent during installation or thermomechanical stresses caused by differential thermal expansion between the conductor and the polymeric material. In order to investigate the possible influence of mechanical stresses on dielectric properties of polyethylene, measurements were conducted on pin-plane XLPE and LDPE samples with various magnitudes of residual mechanical stresses around the embedded electrode. The time to inception, the growing rate and the shape of the electrical trees under different voltages are reported in this paper. Specimens with the highest values of residual stresses were found to have the shortest inception times and the longest trees after one hour of aging under different voltages. When the mechanical stress was allowed to relax, the treeing resistance was measured to be significantly improved

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:3 ,  Issue: 2 )