By Topic

Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. S. Henriquez ; Dept. of Biomed. Eng., Duke Univ., Durham, NC, USA ; A. A. Papazoglou

The merging of hypotheses and techniques from physics, mathematics, biomedical engineering, cardiology, and computer science is helping to form increasingly more realistic computer models of the heart. These models complement experimental and clinical studies that seek to elucidate the mechanisms of arrhythmogenesis and improve pharmacological and electrical therapies. This paper reviews the current state of the art of computer models for investigating normal and abnormal conduction in cardiac muscle. A brief introduction to the mathematical foundations of continuous (monodomain and bidomain) and discrete tissue structure models and to ionic current based and FitzHugh-Nagumo membrane models is presented. The paper summarizes some of the recent contributions in validating tissue structure models, modeling unidirectional block and reentry in a 1-D loop, and applying generic spiral wave theory to cardiac arrhythmias

Published in:

Proceedings of the IEEE  (Volume:84 ,  Issue: 3 )