Cart (Loading....) | Create Account
Close category search window

Dynamical x-ray microscopy investigation of electromigration in passivated inlaid Cu interconnect structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Schneider, G. ; Center for X-ray Optics, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 2-400, Berkeley, California 94720 ; Denbeaux, G. ; Anderson, E.H. ; Bates, B.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Quantitative time-resolved x-ray microscopy mass transport studies of the early stages of electromigration in an inlaid Cu line/via structure were performed with about 40 nm lateral resolution. The image sequences show that void formation is a highly dynamic process, with voids being observed to nucleate and grow within the Cu via and migrate towards the via sidewall. Correlation of the real time x-ray microscopy images with postmortem high voltage electron micrographs of the sample indicates that the void nucleation occurs at the site of grain boundaries in Cu, and that the voids migrate along these grain boundaries during electromigration. © 2002 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:81 ,  Issue: 14 )

Date of Publication:

Sep 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.