By Topic

Design of augmented fuzzy logic power system stabilizers to enhance power systems stability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Toliyat, H.A. ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; Sadeh, J. ; Ghazi, R.

This paper presents an augmented fuzzy logic power system stabilizer (PSS) for stability enhancement of multimachine power systems. In order to accomplish a satisfactory damping characteristic over a wide range of operating points, speed deviation (Δω) and acceleration (Δω) of a synchronous generator were taken as the input signals to the fuzzy controller. It is well known that these variables have significant effects on damping the generators' shaft mechanical oscillations. A modification of the terminal voltage feedback signal to the excitation system as a function of the accelerating power on the unit, is also used to enhance the stability of the system. The stabilizing signals are computed using the standard fuzzy membership function depending on these variables. The performance of the proposed augmented fuzzy controller is compared to an optimal controller and its effectiveness is demonstrated by a detailed digital computer simulation of a single machine infinite bus and a multimachine power systems

Published in:

Energy Conversion, IEEE Transactions on  (Volume:11 ,  Issue: 1 )