By Topic

Current-limiting thermistors for high-power applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dougal, R.A. ; Dept. of Electr. & Comput. Eng., South Carolina Univ., Columbia, SC, USA

Applications of positive-temperature-coefficient polymer thermistors as current-limiting elements in high-power systems are complicated by the nonlinear scaling of device parameters. The spatial and temporal evolution of the internal quantities temperature and electric field, and the temporal evolution of the external device property resistance, are described here as calculated according to a one-dimensional electrothermal model. Under a steeply ramping current excitation, a longitudinal heating instability compresses the electric field into the center of the material, thereby inducing dielectric failure. Insight into the design of a useful device is provided by results of calculations under three different conditions

Published in:

Power Electronics, IEEE Transactions on  (Volume:11 ,  Issue: 2 )