By Topic

Analysis of high impedance faults using fractal techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. V. Mamishev ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; B. D. Russell ; C. L. Benner

Phase currents and voltages in a distribution power system change with a certain degree of chaos when high impedance faults (HIFs) occur. This paper describes application of the concepts of fractal geometry to analyze chaotic properties of high impedance faults. Root-mean-square rather that instantaneous values of currents are used for characterization of temporal system behavior; this results in relatively short time-series available for analysis. An algorithm is presented for pattern recognition and detection of HIFs; it is based on techniques suited for analysis of relatively small data sets. Examples are given to illustrate the ability of this approach to discriminate between faults and other transients in a power system

Published in:

IEEE Transactions on Power Systems  (Volume:11 ,  Issue: 1 )