By Topic

A parallel asynchronous decomposition for on-line contingency planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ramesh, V.C. ; Dept. of Electr. & Comput. Eng., Illinois Inst. of Technol., Chicago, IL, USA ; Talukdar, Sarosh N.

Traditional formulations of security-constrained-optimal-power-flows represent contingencies by hard constraints. The disadvantages are four-fold. First, the conflicts among contingencies must be arbitrated apriori, before their effects are known. Second, the feasible region shrinks with an increase in the number of contingencies. Third, computational time increases with the number of contingencies. Fourth, hard constraints provide poor models of fuzzy quantities such as equipment ratings and operating guidelines. This paper develops a modeling framework without these disadvantages. Specifically, it allows for soft constraints and always has feasible solutions. The effects of conflicts among contingencies are displayed so system operators can arbitrate them in an informed manner. Moreover, each contingency can be handled asynchronously and in parallel. In other words, the computational time, for handling an arbitrarily large number of contingencies, remains the same as for performing an optimal power flow without any contingencies (provided that a computer is dedicated to each contingency)

Published in:

Power Systems, IEEE Transactions on  (Volume:11 ,  Issue: 1 )