By Topic

Programmable active memories: reconfigurable systems come of age

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
J. E. Vuillemin ; Paris Res. Lab., Digital Equipment Corp., Rueil-Malmaison, France ; P. Bertin ; D. Roncin ; M. Shand
more authors

Programmable active memories (PAM) are a novel form of universal reconfigurable hardware coprocessor. Based on field-programmable gate array (FPGA) technology, a PAM is a virtual machine, controlled by a standard microprocessor, which can be dynamically and indefinitely reconfigured into a large number of application-specific circuits. PAM's offer a new mixture of hardware performance and software versatility. We review the important architectural features of PAM's, through the example of DECPeRLe-1, an experimental device built in 1992. PAM programming is presented, in contrast to classical gate-array and full custom circuit design. Our emphasis is on large, code-generated synchronous systems descriptions; no compromise is made with regard to the performance of the target circuits. We exhibit a dozen applications where PAM technology proves superior, both in performance and cost, to every other existing technology, including supercomputers, massively parallel machines, and conventional custom hardware. The fields covered include computer arithmetic, cryptography, error correction, image analysis, stereo vision, video compression, sound synthesis, neural networks, high-energy physics, thermodynamics, biology and astronomy. At comparable cost, the computing power virtually available in a PAM exceeds that of conventional processors by a factor 10 to 1000, depending on the specific application, in 1992. A technology shrink increases the performance gap between conventional processors and PAM's. By Noyce's law, we predict by how much the performance gap will widen with time.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:4 ,  Issue: 1 )