By Topic

Compensation methods for head motion detected during PET imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Menke ; TRIUMF, Vancouver, BC, Canada ; M. S. Atkins ; K. R. Buckley

The authors describe two methods to correct for motion artifacts in head images obtained by positron emission tomography (PET). The methods are based on six-dimensional motion data of the head that have to be acquired simultaneously during scanning. The data are supposed to represent the rotational and translational deviations of the head as a function of time, with respect to the initial head position. The first compensation method is a rebinning procedure by which the lines of response are geometrically transformed according to the current values of the motion data, assuming a cylindrical scanner geometry. An approximation of the rebinning transformations by use of large look-up tables, having the potential of on-line event processing, is presented. The second method comprises post-processing of the reconstructed images by unconstrained or constrained deconvolution of the image or image segments with kernels that are generated from the motion data. The authors use motion data that were acquired with a volunteer in supine position, immobilized by a thermoplastic head holder, to demonstrate the effects of the compensation methods. Preliminary results obtained with test data indicate that the methods have the potential to improve the resolution of PET images in cases where significant head motion has occurred, provided that the head position and orientation can be accurately measured

Published in:

IEEE Transactions on Nuclear Science  (Volume:43 ,  Issue: 1 )