By Topic

Derived PDF of maximum likelihood signal estimator which employs an estimated noise covariance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
C. D. Richmond ; Dept. of Electr. Eng. & Comput. Sci., MIT, Cambridge, MA, USA

A probability density function (PDF) for the maximum likelihood (ML) signal vector estimator is derived when the estimator relies on a noise sample covariance matrix (SCM) for evaluation. By using a complex Wishart probabilistic model for the distribution of the SCM, it is shown that the PDF of the adaptive ML (AML) signal estimator (alias the SCM based minimum variance distortionless response (MVDR) beamformer output and, more generally, the SCM based linearly constrained minimum variance (LCMV) beamformer output) is, in general, the confluent hypergeometric function of a complex matrix argument known as Kummer's function. The AML signal estimator remains unbiased but only asymptotically efficient; moreover, the AML signal estimator converges in distribution to the ML signal estimator (known noise covariance). When the sample size of the estimated noise covariance matrix is fixed, it is demonstrated that there exists a dynamic tradeoff between signal-to-noise ratio (SNR) and noise adaptivity as the dimensionality of the array data (number of adaptive degrees of freedom) is varied, suggesting the existence of an optimal array data dimension that will yield the best performance

Published in:

IEEE Transactions on Signal Processing  (Volume:44 ,  Issue: 2 )