By Topic

Optimal filter banks for signal reconstruction from noisy subband components

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Delopoulos, A. ; Div. of Comput. Sci., Nat. Tech. Univ. of Athens, Greece ; Kollias, S.D.

Conventional design techniques for analysis and synthesis filters in subband processing applications guarantee perfect reconstruction of the original signal from its subband components. The resulting filters, however, lose their optimality when additive noise due, for example, to signal quantization, disturbs the subband sequences. We propose filter design techniques that minimize the reconstruction mean squared error (MSE) taking into account the second order statistics of signals and noise in the case of either stochastic or deterministic signals. A novel recursive, pseudo-adaptive algorithm is proposed for efficient design of these filters. Analysis and derivations are extended to 2-D signals and filters using powerful Kronecker product notation. A prototype application of the proposed ideas in subband coding is presented. Simulations illustrate the superior performance of the proposed filter banks versus conventional perfect reconstruction filters in the presence of additive subband noise

Published in:

Signal Processing, IEEE Transactions on  (Volume:44 ,  Issue: 2 )