Scheduled System Maintenance:
On April 27th, single article purchases and IEEE account management will be unavailable from 2:00 PM - 4:00 PM ET (18:00 - 20:00 UTC).
We apologize for the inconvenience.
By Topic

Symbolic representation of neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Setiono, R. ; Nat. Univ. of Singapore, Singapore ; Huan Liu

Neural networks often surpass decision trees in predicting pattern classifications, but their predictions cannot be explained. This algorithm's symbolic representations make each prediction explicit and understandable. Our approach to understanding a neural network uses symbolic rules to represent the network decision process. The algorithm, NeuroRule, extracts these rules from a neural network. The network can be interpreted by the rules which, in general, preserve network accuracy and explain the prediction process. We based NeuroRule on a standard three layer feed forward network. NeuroRule consists of four phases. First, it builds a weight decay backpropagation network so that weights reflect the importance of the network's connections. Second, it prunes the network to remove irrelevant connections and units while maintaining the network's predictive accuracy. Third, it discretizes the hidden unit activation values by clustering. Finally, it extracts rules from the network with discretized hidden unit activation values

Published in:

Computer  (Volume:29 ,  Issue: 3 )