By Topic

Simplification of fuzzy-neural systems using similarity analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chao, C.T. ; Inst. of Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chen, Y.J. ; Teng, C.C.

This paper presents a fuzzy neural network system (FNNS) for implementing fuzzy inference systems. In the FNNS, a fuzzy similarity measure for fuzzy rules is proposed to eliminate redundant fuzzy logical rules, so that the number of rules in the resulting fuzzy inference system will be reduced. Moreover, a fuzzy similarity measure for fuzzy sets that indicates the degree to which two fuzzy sets are equal is applied to combine similar input linguistic term nodes. Thus we obtain a method for reducing the complexity of a fuzzy neural network. We also design a new and efficient on-line initialization method for choosing the initial parameters of the FNNS. A computer simulation is presented to illustrate the performance and applicability of the proposed FNNS. The result indicates that the FNNS still has desirable performance under fewer fuzzy logical rules and adjustable parameters

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:26 ,  Issue: 2 )