Cart (Loading....) | Create Account
Close category search window

A constructive approach for nonlinear system identification using multilayer perceptrons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ju-Yeop Choi ; Bradley Dept. of Electr. Eng., Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA ; Van Landingham, H.F. ; Bingulac, S.

This paper combines a conventional method of multivariable system identification with a dynamic multi-layer perceptron (MLP) to achieve a constructive method of nonlinear system identification. The class of nonlinear systems is assumed to operate nominally around an equilibrium point in the neighborhood of which a linearized model exists to represent the system, although normal operation is not limited to the linear region. The result is an accurate discrete-time nonlinear model, extended from a MIMO linear model, which captures the nonlinear behavior of the system

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:26 ,  Issue: 2 )

Date of Publication:

Apr 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.