By Topic

Design and validation of a knowledge-based system for screening product innovations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Ram ; Dept. of Manage. Inf. Syst., Arizona Univ., Tucson, AZ, USA ; S. Ram

The authors' research goal is to develop and validate an expert system that screens innovations prior to commercialization. This is an important research issue because business corporations are highly dependent on innovations for their growth and profitability, yet most corporations suffer from a high rate of new product failure. Few of the existing decision support systems have alleviated this problem, partly because of their inability to deal with nonmathematical (logical) relationships. An expert system for new product planning could save organizations tremendous amounts of resources (such as dollars, time and scientific talent) spent on product failures. The design of the proposed knowledge-based system is built upon the authors' earlier work in this area. The authors have addressed several critical research issues in the development of such a system: choice of the appropriate sources of knowledge, resolution of conflict among human experts chosen for knowledge acquisition, use of knowledge programming techniques that can accommodate uncertainty, and multiple methods of system validation. The research makes several contributions to marketing theory and practice. Most notably, the development of such systems contributes to effective product planning in organizations and enhances resource efficiency. Further, it generates guidelines for capturing and using expertise in highly unstructured decision-making situations such as product management

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:26 ,  Issue: 2 )