By Topic

MDS array codes with independent parity symbols

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Blaum, M. ; IBM Almaden Res. Center, San Jose, CA, USA ; Bruck, J. ; Vardy, A.

A new family of maximum distance separable (MDS) array codes is presented. The code arrays contain p information columns and r independent parity columns, each column consisting of p-1 bits, where p is a prime. We extend a previously known construction for the case r=2 to three and more parity columns. It is shown that when r=3 such extension is possible for any prime p. For larger values of r, we give necessary and sufficient conditions for our codes to be MDS, and then prove that if p belongs to a certain class of primes these conditions are satisfied up to r⩽8. One of the advantages of the new codes is that encoding and decoding may be accomplished using simple cyclic shifts and XOR operations on the columns of the code array. We develop efficient decoding procedures for the case of two- and three-column errors. This again extends the previously known results for the case of a single-column error. Another primary advantage of our codes is related to the problem of efficient information updates. We present upper and lower bounds on the average number of parity bits which have to be updated in an MDS code over GF (2m), following an update in a single information bit. This average number is of importance in many storage applications which require frequent updates of information. We show that the upper bound obtained from our codes is close to the lower bound and, most importantly, does not depend on the size of the code symbols

Published in:

Information Theory, IEEE Transactions on  (Volume:42 ,  Issue: 2 )