Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Genetics-based machine learning for the assessment of certain neuromuscular disorders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pattichis, C.S. ; Dept. of Comput. Sci., Univ. of Cyprus, Nicosia, Cyprus ; Schizas, C.N.

Clinical electromyography (EMG) provides useful information for the diagnosis of neuromuscular disorders. The utility of artificial neural networks (ANN's) in classifying EMG data trained with backpropagation or Rohonen's self-organizing feature maps algorithm has recently been demonstrated. The objective of this study is to investigate how genetics-based machine learning (GBML) can be applied for diagnosing certain neuromuscular disorders based on EMG data. The effect of GBML control parameters on diagnostic performance is also examined. A hybrid diagnostic system is introduced that combines both neural network and GBML models. Such a hybrid system provides the end-user with a robust and reliable system, as its diagnostic performance relies on more than one learning principle. GBML models demonstrated similar performance to neural-network models, but with less computation. The diagnostic performance of neural network and GBML models is enhanced by the hybrid system

Published in:

Neural Networks, IEEE Transactions on  (Volume:7 ,  Issue: 2 )