Cart (Loading....) | Create Account
Close category search window
 

Uncertainty management in expert systems using fuzzy Petri nets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Konar, A. ; Dept. of Electron. & Telecommun. Eng., Jadavpur Univ., Calcutta, India ; Mandal, A.K.

The paper aims at developing new techniques for uncertainty management in expert systems for two generic class of problems using fuzzy Petri nets that represent logical connectivity among a set of imprecise propositions. One class of problems deals with the computation of fuzzy belief of any proposition from the fuzzy beliefs of a set of independent initiating propositions in a given network. The other class of problems is concerned with the computation of steady-state fuzzy beliefs of the propositions embedded in the network, from their initial fuzzy beliefs through a process called belief revision. During belief revision, a fuzzy Petri net with cycles may exhibit “limit cycle behavior” of fuzzy beliefs for some propositions in the network. No decisions can be arrived at from a fuzzy Petri net with such behavior. To circumvent this problem, techniques have been developed for the detection and elimination of limit cycles. Further, an algorithm for selecting one evidence from each set of mutually inconsistent evidences, referred to as nonmonotonic reasoning, has also been presented in connection with the problems of belief revision. Finally, the concepts proposed for solving the problems of belief revision have been applied successfully for tackling imprecision, uncertainty, and nonmonotonicity of evidences in an illustrative expert system for criminal investigation

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:8 ,  Issue: 1 )

Date of Publication:

Feb 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.