Cart (Loading....) | Create Account
Close category search window

Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ting-Kuang Chiang ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; Kagi, N. ; Marhic, M.E. ; Kazovsky, Leonid G.

We have theoretically and experimentally investigated the cross-phase modulation (XPM) effect in optical fiber links with multiple optical amplifiers and dispersion compensators. Our theory suggests that the XPM effect can be modeled as a phase modulator with inputs from the intensity of copropagating waves. The frequency response of the phase modulator corresponding to each copropagating wave depends on fiber dispersion, wavelength separation, and fiber length. The total XPM-induced phase shift is the integral of the phase shift contributions from all frequency components of copropagating waves. In nondispersive fibers, XPM is frequency-independent; in dispersive fibers, XPM's frequency response is approximately inversely proportional to the product of frequency, fiber dispersion, and wavelength separation. In an N-segment amplified link, the frequency response of XPM is increased N-fold, but only in very narrow frequency bands. In most other frequency bands, the amount of increase is limited and almost independent of N. However, in an N-segment amplified link with dispersion compensators, the frequency response of XPM is increased N-fold at all frequencies if the dispersion is compensated for within each fiber segment. Thus, the XPM-induced phase shift is smaller in systems employing lumped dispersion compensation than in systems employing distributed dispersion compensation

Published in:

Lightwave Technology, Journal of  (Volume:14 ,  Issue: 3 )

Date of Publication:

Mar 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.