By Topic

Analytic modeling of clustered RAID with mapping based on nearly random permutation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Merchant, A. ; Hewlett Packard Labs., Palo Alto, CA, USA ; Yu, P.S.

A Redundant Array of Independent Disks (RAID) of G disks provides protection against single disk failures by adding one parity block for each G-1 data blocks. In a clustered RAID, the G data/parity blocks are distributed over a cluster of C disks (C>G), thus reducing the additional load on each disk due to a single disk failure. However, most methods proposed for implementing such a mapping do not work for general C and G values. In this paper, we describe a fast mapping algorithm based on almost-random permutations. An analytical model is constructed, based on the queue with a permanent customer, to predict recovery time and read/write performance. The accuracy of the results derived from this model is validated by comparing with simulations. Our analysis shows that clustered RAID is significantly more tolerant of disk failure than the basic RAID scheme. Both recovery time and performance degradation during recovery are substantially reduced in clustered RAID; moreover, these gains can be achieved using fairly small C/G ratios

Published in:

Computers, IEEE Transactions on  (Volume:45 ,  Issue: 3 )