By Topic

A method for speed optimized partial product reduction and generation of fast parallel multipliers using an algorithmic approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
V. G. Oklobdzija ; Integration, Berkeley, CA, USA ; D. Villeger ; S. S. Liu

This paper presents a method and an algorithm for generation of a parallel multiplier, which is optimized for speed. This method is applicable to any multiplier size and adaptable to any technology for which speed parameters are known. Most importantly, it is easy to incorporate this method in silicon compilation or logic synthesis tools. The parallel multiplier produced by the proposed method outperforms other schemes used for comparison in our experiment. It uses the minimal number of cells in the partial product reduction tree. These findings are tested on design examples simulated in 1 μ CMOS ASIC technology

Published in:

IEEE Transactions on Computers  (Volume:45 ,  Issue: 3 )