By Topic

Vehicle segmentation and classification using deformable templates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. -P. Dubuisson Jolly ; Siemens Corp. Res. Inc., Princeton, NJ, USA ; S. Lakshmanan ; A. K. Jain

This paper proposes a segmentation algorithm using deformable template models to segment a vehicle of interest both from the stationary complex background and other moving vehicles in an image sequence. We define a polygonal template to characterize a general model of a vehicle and derive a prior probability density function to constrain the template to be deformed within a set of allowed shapes. We propose a likelihood probability density function which combines motion information and edge directionality to ensure that the deformable template is contained within the moving areas in the image and its boundary coincides with strong edges with the same orientation in the image. The segmentation problem is reduced to a minimization problem and solved by the Metropolis algorithm. The system was successfully tested on 405 image sequences containing multiple moving vehicles on a highway

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:18 ,  Issue: 3 )