By Topic

Object matching using deformable templates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. K. Jain ; Dept. of Comput. Sci., Michigan State Univ., East Lansing, MI, USA ; Yu Zhong ; S. Lakshmanan

We propose a general object localization and retrieval scheme based on object shape using deformable templates. Prior knowledge of an object shape is described by a prototype template which consists of the representative contour/edges, and a set of probabilistic deformation transformations on the template. A Bayesian scheme, which is based on this prior knowledge and the edge information in the input image, is employed to find a match between the deformed template and objects in the image. Computational efficiency is achieved via a coarse-to-fine implementation of the matching algorithm. Our method has been applied to retrieve objects with a variety of shapes from images with complex background. The proposed scheme is invariant to location, rotation, and moderate scale changes of the template

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:18 ,  Issue: 3 )