Cart (Loading....) | Create Account
Close category search window

Efficient LRU-based buffering in a LAN remote caching architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Leff, A. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Wolf, J.L. ; Yu, P.S.

The possibility of fast access to the main memory of remote sites has been advanced as a potential performance improvement in distributed systems. Even if a page is not available in local memory, sites need not do a disk access. Instead, the sites can use efficient mechanisms that support rapid request/response exchanges in order to access pages that are currently buffered at a remote site. Hardware and software support in such a remote caching architecture must also include algorithms that determine which pages should be buffered at what sites. When each site uses the classic LRU replacement algorithm, performance can be much worse than optimal in many system configurations. Because sites do not coordinate individual decisions, overall system buffering/caching decisions yield very inefficient global configurations. This paper proposes an easily implementable modification of the LRU replacement algorithm for LAN environments that reduces replication. The algorithm substantially improves hit-ratios-and thus performance-over a wide range of parameters. The relatively simple LAN topology implies that much less state information need be available for good replacement decisions compared to general network topologies. Two implications of two variations of the algorithm are explored. In an environment where the network is not a performance bottleneck, and where performance is memory-limited, performance of the proposed replacement algorithm is shown to be close to optimal

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:7 ,  Issue: 2 )

Date of Publication:

Feb 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.